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Abstract
We use exact diagonalization and the modified Lanczos method to study the
finite-energy and finite-momentum spectral weight of the longitudinal and
transverse spin excitations of the anisotropic zig-zag ladder. We find that the
spin excitations form continua of gapless or gapped spinons in the different
regions of the phase diagram. The results obtained are consistent with a
picture previously proposed that in the anisotropic case there is a transition
from a gapped regime to a gapless regime, for small interchain coupling. In the
gapless regime we find a sharp low-energy peak in the structure function for
the transverse spin excitations, consistent with a finite stiffness.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recently [1] it has been suggested that a two-dimensional spin system, Cs2CuCl4, has an
excitation spectrum that can be described, similarly to the one-dimensional case [2], by
a continuum originated from pairs of spin-1/2 spinons. The standard one-dimensional
Heisenberg model is known to have fractional states where the usual spin-1 magnons are
replaced by pairs of deconfined spin-1/2 topological excitations called spinons [3]. The
characteristic low-excitation-energy coherent peaks that appear in the dynamical susceptibility
are in this case replaced by a continuum. This property has been verified experimentally for
several quasi-one-dimensional spin-1/2 systems such as CPC [4], KCuF3 [5, 6] and copper
benzoate [7], where a description in terms of a nearest-neighbour Heisenberg model is assumed
to apply.

Real materials are, however, neither strictly one dimensional nor are the interactions of
the simple Heisenberg nearest-neighbour form. Originally Cs2CuCl4 was taken as a quasi-
one-dimensional system [8] but a more careful estimate of the inter-chain parameters revealed
that they are of the same order as the intrachain interactions [1]. The interlayer coupling is
estimated to be two orders of magnitude smaller, implying that the system is essentially two
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dimensional. It forms a triangular lattice in the copper (Cu2+, S = 1/2) planes and constitutes
therefore a frustrated system.

Frustrated systems have attracted considerable interest. Using a large-N bosonic
expansion it has been predicted [9] that the presence of frustration may counteract the staggered
fields responsible for confinement [10] and lead to deconfinement of the spinons. In a non-
frustrated system it is known that the low-energy modes are spin-1 magnons. The presence of
frustration leads to a non-collinear order parameter [11], which can be parametrized by three
real scalar numbers. The representation of the spin operators in terms of bosonic operators
contains a hidden internal gauge symmetry under which the scalar link fields transform either
as charge +2 or charge +1 scalars [9]. It was predicted a long time ago that if the charge +2
scalars condense into a Higgs phase [12] then the unit charges are not confined and the spinons
remain free [11]. However the Higgs phase is just one of the possible phases predicted to occur
in the frustrated two-dimensional lattice. The Cs2CuCl4 system provides a first experimental
example of a two-dimensional system with a spectrum consistent with the existence of spinons.

One may think of a simpler system such as the zig-zag ladder, where only two chains are
coupled, and study the excitation spectrum of this system as a first step towards understanding
the two-dimensional triangular lattice obtained in the limit when several ladders are coupled to
each other. In usual spin ladders an infinitesimal coupling between chains leads to a behaviour
qualitatively different from the one-dimensional case. Therefore it is interesting to see whether
in the case of the zig-zag ladder there is a qualitative difference from the single-chain case.
It has been found before that if the next-nearest-neighbour (nnn) interaction is small enough
the system still behaves qualitatively as the single-chain case. Therefore it seems reasonable
that for small couplings we might find similar features characteristic of the single chain, in
particular a spinon-originated spectrum. The main question to be answered is what happens
for large couplings where the role of the nnn coupling is important. We shall show that indeed
for all couplings a spinon description holds. A direct comparison with the experimental results
for Cs2CuCl4 would require a full two-dimensional calculation but our results for the zig-zag
ladder give a first indication that the nnn coupling does not lead to a coherent energy spectrum.

In the context of a frustrated two-leg ladder similar to the zig-zag ladder [13], it has been
shown that the spinons survive as the elementary excitations in a spontaneously dimerized
ground state but become massive. A local Z2 symmetry related to independent translations
by one lattice spacing on each chain is spontaneously broken and leads to a non-vanishing
dimerization for strong enough frustration. This symmetry breaking leads to kinks as
elementary excitations which are massive. These kinks have been shown to have S = 1/2 and
therefore at least two must be created.

In general if a term removes explicitly the Z2 degeneracy between the two dimerized
ground states this leads to soliton confinement. An example is to introduce explicit dimerization
in the Hamiltonian. The role of explicit dimerization has also been addressed in the context
of spin–Peierls systems such as CuGeO3 [14], NaV2O3 [15] or Cu(NO3)22.5D2O [16]. The
excitation spectrum of these systems is however considerably different from the chains without
dimerization. The spectrum is gapped and the lowest-energy excitations are coherent spin-1
magnon peaks [17] that separate from the continuum that appears at higher energies. The
spectrum of these systems is actually closer to integer spin chains [18] or to spin ladders [19].
The effects of explicit dimerization have received renewed attention recently [20].

Another source of interest in the zig-zag ladder is that it has been proposed that in the
anisotropic case incommensurate quasi-long-range spin correlations should be observed. Also
a gapless chiral phase has been predicted to occur [21]. In this work we focus our attention on
the combined effects of an nnn frustrating interaction and of anisotropy. In a two-dimensional
non-frustrating system the spectrum is coherent and composed of magnons. The addition of
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frustrating terms may lead to deconfined spinons. In the zig-zag ladder when the nnn frustrating
coupling is absent the system has a spectrum determined by gapless spinons (this is the case
of the simple Heisenberg chain). Adding frustration it is expected that the spinons will remain
deconfined. In the isotropic case where the effect of the nnn coupling is to dimerize the spinons
are massive at sufficiently strong nnn coupling. In the anisotropic case at strong enough nnn
couplings we expect the system to have a transition from the intermediate dimer phase to a
gapless phase where we expect the deconfined spinons to be massless.

2. Hamiltonian

The anisotropic zigzag ladder is defined by the Hamiltonian

H = 1
2J

XY
1

∑
i

(
S+
i S

−
i+1 + S−

i S+
i+1

)
+ J z
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The spin operators refer to spin S = 1/2 states, while the summation i = 1, . . . , N runs
along the ‘rib’ of the zig-zag ladder. We shall parametrize the interactions by the coupling
parameter j = JXY

2 /JXY
1 and by the anisotropy parameter J z

1 /J
XY
1 = � = J z

2 /J
XY
2 . (The

isotropic case reduces to j = J2/J1 and � = 1.) We shall set JXY
1 = 1 henceforth. The

nearest-neighbour Heisenberg chain with anisotropy corresponds to both the weak-coupling
(J1 = 0) and the strong-coupling (J2 = 0) limits of the zig-zag ladder. The spectrum is gapless
for the case of XY anisotropy, |�| � 1, as shown by the Bethe ansatz [22]. The excitation
spectrum consists of spin-1/2 particles dubbed spinons. Since flipping one spin represents a
spin-1 excitation, the spinons can only be created in pairs. Therefore the conventional spin-1
magnons are deconfined into spin-1/2 spinons that propagate incoherently.

The isotropic case has been studied before [23–28] as a function of the coupling parameter,
j = J2/J1. As j increases, the system goes from gapless (single chain) to a dimer phase and
then to a spiral phase, where the structure factor has a maximum at a momentum π/2 < q < π .
The system has a spin gap in these last two phases, and it therefore only displays short-
range order. In the limit where the intra-chain interaction is much larger than the inter-
chain interaction (j → ∞) the two chains decouple and a gapless single-chain behaviour is
recovered. It has been argued that this only happens, strictly speaking, at j = ∞: the spin
gap becomes exponentially small as j grows, but it remains non-vanishing [27]. Recently, on
the other hand, it has been proposed that incommensurate quasi-long-range spin correlations
should be observed if easy-plane (XY ) anisotropy is included in the zigzag ladder [21]. This is
argued to be due to the presence of a ‘twist’ term that results from the inter-chain interaction.
It has been proposed that there is one gapless mode and one mode with a gap in the regime
of strong XY anisotropy in the inter-chain coupling. Another prediction of this work is the
existence of spontaneous local spin currents. This, however, has been refuted in [29]. Also,
other recent numerical work [30] has failed to confirm the gapless nature of the ground state in
the anisotropic XY case at weak interchain coupling. Recent density matrix renormalization
group (DMRG) results [31] suggest, however, that the zig-zag ladder does indeed show a
gapless chiral phase as predicted in [21].

Also, recently an analysis of the exact properties of such finite systems was carried out,
looking at various correlation functions and the structure of the spectrum in both the isotropic
and the anisotropic cases [32]. The spin stiffness of the zig-zag ladder was calculated, and
evidence was found for a gapless regime at weak coupling that survives the thermodynamic
limit in the case of XY anisotropy. This was also concluded looking at the level crossings
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to detect the phase transition between the two regimes [32], using a previously proposed
procedure to detect the dimer transition at strong interchain coupling [23]. The same method
was also recently used in [33].

In this work we shall study the structure function and the spectral weight of the spin
excitations both for the longitudinal and the transverse correlations. Our results are consistent
with previous conclusions that there is a transition to a gapless regime at weak coupling if
anisotropy is present. The results indicate a continuum of gapless excitations in the transverse
correlations in the XY case, and a continuum of gapped excitations in the isotropic case.

3. Spectral weight

The structure function is defined by the overlap of two states coupled either by the longitudinal
or the transverse spin operator [3],

Sµν(q, ω) = 1

N

∑
l,R

eiqR
∫ ∞

−∞
dt eiωt 〈Sµ

l (t)S
ν
l+R(0)〉 (2)

where µ and ν are Cartesian components. At zero temperature we obtain therefore

Sµµ(q, ω) =
∑
λ

M
µ
λ δ(ω + EG − Eλ)δ(q + k0 − kλ) (3)

where EG is the ground-state energy, Eλ is the energy of an excited state, ω is the excitation
energy (energy difference to the ground state) and q is its momentum (momentum difference
to the momentum of the ground state k0) and the spectral weight is defined by

M
µ
λ = 2π |〈G|Sµ(q)|λ〉|2 (4)

where Sµ(q) is the Fourier transform of the spin operator. We shall calculate the structure
functions S+−(q, ω) and Szz(q, ω) which probe the transverse and the longitudinal spin
excitations, respectively.

The single-chain case was studied before by both the Bethe ansatz [2] and using numerical
diagonalization of small systems [3]. The continuum of excitations is contained in the
thermodynamic limit between two limiting functions ofq: the bottom curve is the single-spinon
dispersion, εl(q), and the upper one is the maximum energy resulting from the combined effect
of two spinons, εu(q). In the isotropic case (� = 1) the lines are defined by

εl(q)

J1
= π

2
|sin(q)|

εu(q)
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= π

∣∣∣sin
(q

2

)∣∣∣ (5)

and in the XY case (� = 0) they are defined by

εl(q)

JXY
1

= |sin(q)|
εu(q)

JXY
1

= 2
∣∣∣sin

(q

2

)∣∣∣ .
(6)

In the XY case the longitudinal structure function can be calculated exactly [34] since this
system is equivalent to free spinless fermions and it is given by [3]

Szz(q, ω) = 2
"(ω − sin(q))"(2 sin(q/2) − ω)√

4 sin2(q/2) − ω2
. (7)
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In the isotropic case there is no exact solution but Müller et al [3] proposed an ansatz that fits
very well both numerical results for small systems and various experimental results where a
description in terms of a single chain is expected to hold. The Müller ansatz is

Szz(q, ω) = A√
ω2 − ε2

l (q)

"(ω − εl(q))"(εu(q) − ω) (8)

where " is a step function and A a constant [35], [3]1. This function diverges at the lower
boundary while in the XY case it diverges at the upper boundary2. At momentum π the
divergence is stronger and it diverges as Szz ∼ ω−1.

In the thermodynamic limit the structure function equation (3) can be written as a
product [3]

Sµµ(q, ω) = Mµ(q, ω)D(q, ω) (9)

where Mµ(q, ω) is the continuum limit of the spectral weight originating in the overlap
equation (4) and D(q, ω) is the density of states. In the isotropic and in the XY case the
density of states is finite and nearly constant close to the low-energy threshold and it diverges
at the upper threshold. On the other hand Mµ(q, ω) is constant in the XY case and it diverges
at the lower threshold in the Heisenberg case. The structure function as a consequence diverges
in the lower threshold for the Heisenberg chain and it diverges in the upper threshold in the XY

case [3]. For any finite system the density of states is a set of delta functions at the excitation
energies.

Using field theory it is also possible to determine the dependence of the transverse structure
function close to the lower threshold. In the single-chain case the transverse function is given
by [37]

S+−(q, ω) ∼ 1(
ω2 − ε2

l (q)
)3/4 j = 0 � = 0 (10)

and therefore

S+−(π, ω) ∼ ω−3/2. (11)

However the finite-energy structure function is not known analytically.
The ladder case is more involved. We shall use exact diagonalization of finite systems

together with the modified Lanczos method [36].

4. Numerical results

Let us begin by recalling the quantum numbers of the ground state as a function of the sizeN for
the S = 1/2 zig-zag antiferromagnet. Periodic boundary conditions are imposed throughout.
The ground state is a spin singlet in general due to the antiferromagnetic interactions. The
system has three well defined regimes, (a) strong coupling, (b) intermediate coupling and (c)
weak coupling. Consider the isotropic case first. For strong enough coupling between chains,
j = J2/J1 < 1/2, it has either momentum π for N = 4n+ 2 or momentum 0 for N = 4n. For
intermediate couplings (j > 1/2), on the other hand, the momentum oscillates between 0 and
π as a function of the coupling parameter j and of the system size N [38]. There are several
points along j in this regime where the corresponding energy levels for these two momentum

1 See also [35] where the exponent of the structure function for the Heisenberg chain was obtained using the Luttinger
model analogy.
2 Note however that in the case of the XY chain the high-energy behaviour is not well described by the Luttinger
model [35].
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values cross. The ground state is degenerate at these points, and this is reflected by peaks in
the dimer correlation function [32, 39]. Such level crossings grow in number as the system
size grows, and this indicates that the two singlet states in question are in fact degenerate in the
thermodynamic limit. By the Lieb–Schultz–Mattis theorem [40], this is consistent with a spin
gap in the excitation spectrum that survives the thermodynamic limit in the weak-coupling
regime j > 1/2.

The spectrum of the anisotropic S = 1/2XXZ zig-zag ladder has also been studied
previously in the strong-coupling regime up to the Majumdar–Ghosh line (0 < j < 1/2) [41].
A gapless regime occurs for XY anisotropy � � 1 and strong coupling j < jc1(�); an Ising
antiferromagnet along the rib of the zig-zag that shows a spin gap in the excitation spectrum
occurs for � > 1 and j < jc1(�), and a dimer phase regime that also has a spin gap exists at
j > jc1(�) and any �. The line j = jc1(�) separates the gapless phase from the dimer phase
for � � 1, while it separates the dimer phase from the (Ising) Néel phase for � > 1. The line
at � = 1 and j < jc1 separates the XY gapless phase from the Ising phase.

It was found [32] that there is a transition from the gapped intermediate-coupling regime
to a weak-coupling gapless regime. In the intermediate-coupling regime the two lowest states
are two states with Sz = 0, of momenta k = 0, π . There is a line, jc2(�), where the first
excited state becomes a Sz = ±1, k = π/2 state, signalling the doubling of the periodicity and
leading to a gapless regime as confirmed from the spin stiffness tensor highest eigenvalue [32].
The curve jc2(�) shown in figure 4 of [32] separates a spin-gap (dimer) phase from a gapless
phase at small interchain couplings. As expected, the value of jc2 grows near the isotropic
point. (It should tend to j = ∞ at � = 1 according to White and Affleck [27], but finite-size
effects give a finite value.)

Let us now analyse the spectral weight equation (4) at various points in the phase diagram
parametrized by j and �. We shall focus our attention on two classes of parameters. We
shall consider the isotropic case (� = 1) and the XY case (� = 0), varying in both cases the
interchain coupling, j .

Let us begin with the single-chain case for both values of � and let us consider the
particular case N = 16. In figure 1 we show the lowest energy levels (taking the ground state
as the zero of energy) for Sz = 0 and 1 and a given momentum for the Heisenberg chain and
the XY chain. In the Heisenberg case the states are organized into spin multiplets due to the
SU(2) spin invariance. The ground state is a spin singlet with momentum zero. The first
excited state is a spin triplet with momentum k = π and the next state is another spin singlet
but with momentum k = π . In the � = 0 case the first excited state is now a state with Sz = 1
and momentum k = π and the next state is fourfold degenerate with Sz = 0 and momentum
k = 4π/N or momentum k = π , or Sz = 2 and the same momentum values [32].

The structure function Szz only couples the ground state to states with Sz = 0 and ST = 1.
On the other hand S+− only couples the ground state to states with Sz = 1 and ST = 1 (ST is
the total spin). In the isotropic case S+− couples to a subset of the states probed by Szz while
in the anisotropic case the two functions probe different sets of states.

In figure 2(a) we show the spin excitations that contribute to Szz(q, ω) for N = 16 and for
� = 1. As mentioned above the spectral weight of the spin excitations decreases as we move
away from the lower threshold. The states contained in the region defined by εl(q) and εu(q)

have a considerable weight while those at higher energies have a much smaller weight [3].
The spectral weight of these higher states will vanish in the thermodynamic limit. Also other
states contained in the continuum have very small weights. The continuum is therefore well
defined by the set of states with highest spectral weight. In figure 2(b) we show the structure
function for the Heisenberg chain. The delta functions at the excitation energies have been
given a finite width in both frequency and momentum for better visualization.
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Figure 1. Excitation energies from the exact diagonalization of an N = 16 chain as a function of
momentum for Sz = 0 and 1 for the Heisenberg chain and the XY chain.

In figure 3 we show the states with non-vanishing spectral weight for the longitudinal
and the transverse structure functions for the XY chain. The longitudinal spectral weight
is uniform inside the continuum defined by equations (6). The spectrum of the transverse
excitations is however different. The lower spinon dispersion is well described by the single-
spinon dispersion; particularly close to q = π the gap is already rather small for such a small
system. At higher energies the spectral weight is considerably spread.

As we introduce the nnn interaction the spectrum remains gapless for all � if j is small.
In the intermediate-coupling regime (j ∼ 1) the system becomes gapped. In figure 4 we show
(a) the spectral weight and (b) the structure function for j = 1 in the isotropic case. The
states with Sz = 0 and momenta k = 0, π are nearly degenerate [32]. The next excited state
is a spin triplet with momentum k = π/2, which in the thermodynamic limit will have a gap
to the ground state. Accordingly the spectral weight shows a gap with a continuum above it
indicative of massive spinons. In the anisotropic case the two lowest states are the same as in
the isotropic case but the next excited state is an Sz = 1, k = π/2 state [32]. The next state
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q/π
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ω
∆=1; j=0

Szz

(a)
(b)

Figure 2. (a) Excitation energies of the states that contribute to the longitudinal spectral weight
for the Heisenberg chain. The solid lines are the exact Bethe ansatz results for the thermodynamic
limit. The numerical results are obtained via exact diagonalization of a N = 16 system. The
points correspond to states with a spectral weight that is (i) M(q, ω) > 1 (full circles), (ii)
1 > M(q, ω) > 0.1 (full squares) and (iii) 0.1 > M(q, ω) > 0.01 (open diamonds). The
same colour code is used in the remaining figures. In (b) we show the structure function. The
momentum is shown in units of π . The vertical scale is in arbitrary units.

is an Sz = 0, k = π singlet. The low value of the gap signals the near level crossing that
for N = 16 occurs around j = 1.2 leading to a gapless regime [32]. In figure 5 we show
the spectral weights and the structure functions for the longitudinal and the transverse spin
excitations. In the case of Szz the lowest gap is at k = π , while for S+− the lowest gap is at
k = π/2. It is also clear that the spectrum is quite sharp at k = π/2 in the transverse spin
function.

As we increase j further the sharpness of the gapless transverse mode at k = π/2 becomes
stronger. In figure 6 we show the structure function for the isotropic case and in figure 7 the
same function for the anisotropic case at j = 2. The Goldstone mode predicted to occur in
the anisotropic case for the transverse spin excitations is clearly singled out.

We also consider the finite-size dependence of the low-energy excitations for the
longitudinal and the transverse spectral functions as a function of the system size using results
from exact diagonalizations and the modified Lanczos method. We consider system sizes up
to N = 24. The results extrapolate to the single-spinon dispersion curve for the various values
of � and j . In particular we consider the anisotropic case.

In figure 8 we show the lowest-energy states for (a) Sz = 0 and (b) Sz = 1 as a function of
momentum for the XY case for j = 2. The spectrum clearly shows the doubling of the lattice
cell with a significant low-energy mode at q = π/2, particularly in the transverse correlations
(Sz = 1), where once again as the system size increases the gapless nature of the spectrum is
evident as j grows (weak interchain couplings).
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Figure 3. Excitation energies of the states that contribute to the (a) longitudinal and (c) transverse
spectral weight of the XY chain. The solid curves in (a) are the exact Bethe ansatz results. We also
show the structure function for the (b) longitudinal and (d) transverse excitations.

In the single-chain case the longitudinal spectrum can be obtained considering the two-
spinon curves (assuming non-interacting spinons) via the usual procedureE(q) = ε(k1)+ε(k2)
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Figure 4. (a) Excitation energies obtained from the exact diagonalization of an N = 16 ladder in
the isotropic case and j = 1 that contribute to the spectral weight and (b) the structure function.

where q = k1 + k2, E(q) is the two-spinon curve and ε(k) is the single-spinon dispersion
curve. These two limiting curves define the region of the continuum spectrum. The transverse
excitations in the anisotropic case probe however a different set of states as can be seen for
example from the single-chain XY case shown in figure 3(c). The high-energy part of the
spectrum shows that the interactions between the spinons cannot be ignored (remember that
in the Jordan–Wigner transformation from an XY chain to spinless fermions, the transverse
correlations involve the presence of strings). Therefore the two-spinon rule requires a proper
treatment of the spinon interactions. The zig-zag ladder case is still more involved, particularly
for the transverse excitations. In any case the continuum is clearly visible.

5. Conclusions

The finite-energy and finite-momentum structure function provides a direct way of analysing
the excitation spectrum. Previously the structure factor was analysed in the isotropic
case [26, 27, 32]. The structure factor is obtained integrating the structure function over
frequency at a fixed momentum. In the isotropic case the peak in the structure factor shifts from
q = π to π/2 when the spiral phase is reached as the Majumdar–Ghosh point is crossed. In the
anisotropic case on the other hand it has been predicted that in the limit of very weak interchain
coupling an incommensurate gapless chiral phase should be observed [21]. However, for finite
systems it is difficult to detect the incommensurability since the shift from commensurability
is very small [30].

In this work we have analysed the structure function itself for the zig-zag ladder as a
function of anisotropy (�) and the interchain coupling (j ). The results show that in general
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Figure 5. Excitation energies of the states that contribute to the (a) longitudinal and (c) transverse
spectral weight in the anisotropic case and j = 1. We also show the structure function for the (b)
longitudinal and (d) transverse excitations.

the excitations are gapless or gapped spinons that have to be created in pairs as for the single-
chain case. In the XY case (� = 0) as j grows it is clear that a gapless mode in the transverse
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Figure 6. Structure function of an N = 16 ladder in the
isotropic case and j = 2.

(a) (b)

Figure 7. Structure function for the (a) longitudinal and (b) transverse excitations in the anisotropic
case and j = 2.

excitations arises in agreement with previous results from field theory [21] and with previous
numerical results [32] obtained analysing the stiffness and the level crossings. In the isotropic
case (� = 1) the spectrum is a continuum of massive spinons. These results may be relevant
to understand the ladder limit in the context of the recent experimental results on the two-
dimensional system Cs2CuCl4 [1].

After this work was completed we became aware of a preprint [42] where using Möbius
boundary conditions it is shown that in the isotropic case for strong and intermediate coupling
the spectrum may be described by a continuum resulting from two-spinon scattering, in
agreement with the general conclusions of our paper.
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system sizes.
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